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For very short transients or at very low temperature, the classical heat diffusion 
phenomenon breaks down because of the presence of temperature travelling waves which 
predominate on the energy transport. To take into account the above breakdown process, the 
usual parabolic equation for heat transfer can be substituted by a hyperbolic equation describ- 
ing the temperature evolution in the medium. In this article numerical simulation of the latter 
is presented and the influence of the propagation of temperature waves on the liquid-vapour 
change is demonstrated. ‘cl 1987 Academic Press, Inc. 

I. INTRODUCTION 

Transient heat transfer problems are commonly solved by using the classical heat 
conduction equation 

ar d’T 
-==p at 

which is a consequence of Fourier’s law 

(in a one-dimensional situation). Consequently the speed of the propagation of a 
thermal disturbance is infinite, that is, the disturbance at any point will be instan- 
taneously felt at every other point of the medium. This is known as heat conduction 
paradox [ 1,2]. 

While in most practical cases, this description of the thermal behaviour of the 
medium is accurate enough; difficulties arise in situations where transients are very 
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short (a few microseconds) or temperatures are very low (near absolute zero). Very 
short transients occur in particular in pulsed laser application technology [ 14-161. 
Very low temperature operation is common in the case of liquid helium used as a 
refrigerant for cooling large superconductive coils through small channels. 

These remarks led several authors [S] to introduce a modified Fourier’s law 
which takes into account a relaxation time or build-up period for the establishment 
of a heat flow resulting from a thermal disturbance. This model implies that the 
temperature evolution follows a hyperbolic-type equation, with a finite speed of 
propagation, called “second sound velocity” in superfluid helium [6]. 

We have soived numerically recently [7, S] the complete thermodynamics 
equations for Helium II given in [9, lo], calculated the relaxation time TV and 
showed that it is proportional to Q ~ ‘. As a consequence for heat flux disturbances 
shorter than rC, the main character of the medium is propagative. On the contrary 
for longer duration than rCr the diffusive character is predominant and prevents 
propagative waves to develop inside the medium (Fig. 1). In fact. the description for 
superfluid helium is more complex because the entropy is transported with the nor- 
mal fluid velocity I’,, according to the two-fluid model [ 1 I]. 

Thus, the simplified hyperbolic equation is valid only if the transport at r’, can 
be neglected as compared to the diffusive phenomenon. This is clearly demonstrated 
by performing an analysis of the non-dimensionaiized equations [lZ]. 

In this work, we extend our previous simulation of energy transport in the case of 
a single liquid phase [7] to the liquid-vapour phase change and applied the results 
to Helium II looking, in particular, to conditions leading to a sudden phase change 
which in turn produces a temperature rise (burnout ). 
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FIG. 1. Temperature profiles in two extreme cases of heat flux 
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2. MATHEMATICAL FORMULATION OF PHASE CHANGE 

2.1. The Non-linear Equations 

The general form of the equations [7] reduces in the one-dimensional case, in the 
absence of forced convection, to the three coupled non-linear equations 

l.?T 
- =Ag+Bg+CT.+D 
at .p7 

%Ed2Kz -- 
at- ax2 

V, 3$$+FV; +G 1 
de 
z 

- k, a2e 
p,c, ax” 

(1) 

(21 

(3) 

where the coefficients .A, B, C, D, E, F, G are functions of T and P.,, through the 
physical variables such as entropy, specific heat, normal and superfluid density, 
viscosity and k,,, py, C, are functions of temperature. 

2.2. Boundary and Initial Conditiom 

2.2.1. At time t = 0 vapour is absent and the liquid phase is at rest, so the 
temperature is constant which implies: 

(dT,‘ds),=, = 0 

and the normal velocity component 

V”(X, 0) = 0. 

2.2.2. At x = L (free extremity of the channel), the boundary conditions are 

T(L, t) = T, and (dP’,,/dy),= L = 0. 

Since previous numerical experiments have demonstrated that the solution of the 
coupled equations set is completely independent of the boundary value of V,,, thus 
we take 

I/,(0, t) = 0. 

Since the liquid-vapour interface is taken at x=0, the temperature boundary 
conditions are of 2 types: 

- Neuman type if T(0, t) < T,,, (liquid phase without vapour j. In this case, 
the heat power Qi is given and T(0, t) is calculated as described in [7]. 

- Dirichlet type if T(0, t j > T,,,. In this case, the liquid-vapour phase 
change starts at .Y = 0 and the boundary condition (Fig. 2) becomes 

T(0, t) = Tsat. 
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FIG. 2. Domains of resolution and boundary condhions. 

2.2.3. There are no real initial conditions for the vapour phase, because, at 
the beginning of the simulated vapour formation, the vapour layer thickness 
SEPS(O), is zero. If, in the following time-step Af, SEPS(r) increases of the quantity 
EPS(t + dr), the initial temperature is thus imposed, equal to T,,, in this layer. 

2.3. Coupling Corlditiorzs 

Two different types of coupling can be noted: 

- The first type concerns the variables T(.u, t) and ‘E,~(x, t), and their 
derivates dT/?s, ?T;‘2t, 2V,,/,/axu, c?V,/c?t [S]. 

~ The second type concerns the liquid-vapour interface and corresponds to 
the strict identity of the temperatures (Fig. 2j, 

T( 1, t) = f3(m, t) = T,,, 

and to the heat energy conservation (Fig. 3), 

Qo = Qv + Qc,. i4 1 

The critical heat flux Q,, corresponds to the amount of heat necessary to main- 
tain the interfacial temperature equal to T,,, for the two following time-steps (k * A! 
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FIG. 3. Energy balance at the vapour-liquid unterface. 

and (li + l)*dt). Its value depends on the solution for T(x, t), I’,(.x, t) and 
T(x, t + At), Vn(x, t + Al). Under the assumption that the interface temperature 
must be constant and equal to T,,,, the critical heat flux is calculated iteratively, 
with respect to the liquid boundary condition 

T(0, t + 4t) = T(0, I) = T,,,. 

3. NUMERICAL ALGORITHM 

The proposed numerical simulation is based on the calculation of the variation of 
the vapour film thickness such as T(x, t + At) and 0(x, t+ 4t) are the unique 
solutions of Eqs. (1) (2), and (3) in accordance with the coupling condition (4) at 
the liquid-vapour interface. The complex iterative process of calculation leads, for 
every time-step, to find the value of EPS(t + 4t). The convergence of the solution 
can be obtained for negative or positive values of EPS( t + At), which corresponds 
either to a condensation or a vaporization process 
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FIG. 5. Numerical algorithm 
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In addition to a purely conductive heat transfer in the vapour phase, two other 
assumptions are made: 

- The vapour pressure is constant at every point of the vapour layer, 

- The interface thickness is zero (Figs. 3 and 4 ). 

The vapour layer space discretisation is quite complex: the space-step d-f changes 
at every time-step but also it is modified during the iterative process inside a 
calculated time-step (Fig. 4). 

The numerical algorithm is presented on Fig. 5, where the three iteration sub- 
loops inside the main time-step loop are shown. The first subloop is concerned with 
the solution of Eqs. (1) and (2) for the liquid. If the temperature T(n, t + dr) is 
smaller than T,,,, the calculation continues for the following time-step. But if 
T(12. f + Jr) = I-,,,, the critical heat flux is calculated and its value stored. 

Then EPS( t + dt j”= ’ is evaluated in the second subloop making possible the dis- 
cretisation. of the vapor layer and the initialisation of the B(i, t) values. 

The solution of 6(i, t+ LI~)~=’ can also be obtained. EPS(r+ At)“+’ is now 
evaluated by an iterative process up to the establishment of the convergence 
criterium 

O<ABS(P;-~y,+‘-~‘l+‘-po)<~, (5, 1 

cyhere E is the admissible error of calculation. The third subloop, which is inside the 
second one, permits obtaining the vapour temperature solution 8(i. t + dt) from the 
non-linear equation (3 j. 

When (5 I is satisfied, the calculation starts again for the following time-step or 
stops if the stationary regime has been reached. 

The different calculations have been made with the space discretisation 
0.01 < As:‘L ~0.1 for the liquid and A.T,/L =O.l for the vapour phase. In order to 
reach a good convergence. the following inequality A-y/At > 40 has been respecred, 
as mentioned by the authors in [7]. Generally, the number of iterations necessary 
to solve T(x, t), L’,,(x~ t), and O(X, t) and for satisfying the energy balance have 
been smaller than 10 for every time-step. The relative values of stop-tests are fixed 
to 1o--5. 

Calculations have been performed on the NAS9080 computer of the Circe Center 
of C.N.R.S. at Orsay. Double precision mode of calculation took about 90 set for 
400 time-steps. 

4. RESULTS PRESENTATION AND DISCUSION 

5.1. General Behacior 

Figure 6 illustrates the general behaviour of the numerical model in the con- 
ditions 
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Qi = 1.46 Wjcm’ 

T,, = 1.80 K 

L=8.5* 10P3m 

ATsat = Tsat - T, = 40 mK. 

Because of the very low value of the temperature gradients in superfluid helium 
(due to its high thermal conductivity), all the results are represented by the relative 
temperature variation AT(.x, t) which is the difference between the absolute value of 
the temperature T(x, t) and the constant reference temperature T, at x= L. 

The temperature prolile AT(x), along the channel in the liquid phase is represen- 
ted on Fig. 6a for different times. Figure 6b corresponds to the temperature 
evolution with time at different stations in the liquid channel. The evolution of the 
vapour layer thickness versus the time is shown in Figs. 6c and d is the vapour for- 
mation velocity. 

These results show the possible existence of a spatial and temporal stationary 
interface as demonstrated by the temperature profile dT( t), and AT(x), and 
achieved for a heat flux value slightly greater than 1.40 W/cm* (solution of the per- 
manent regime in the single liquid phase corresponding to a constant temperature 
gradient ), 

with 

L-,=(1+) 
calculated from the linearized Clausius-Clapeyron equation. 

The vaporization process takes place in less than 1 ms and is associated with a 
temperature disturbance propagating through the liquid phase at the second sound 
velocity. This result was experimentally observed and reported in [ 171. Figure 7 
shows the record of the temperature perturbation detected at 0.5 cm from the heater 
in a He II channel for two bath temperatures (2.1’ K, Fig. 7a and 1.8” K, Fig. 7b). 
This indicates that vaporization can be associated to a transient cooling of the 
liquid [ 181. The vaporization speed is very high and it should be pointed out that 
its time change corresponds to an acceleration of about 100 g. As the vapour layer 
is stabilized, the vaporization speed falls to zero. 

5.2. Effects of the Propagation, Pseudo-Diffusion and Convection Terms 

These effects are illustrated on the Figs. 8, 9, and 10. 



PHASE-CHANGE SIMULATION 43 

52.1. Vapour thickness evolution versus time due to a heat flux of 
1.46 W/cm’ in the two following cases: 

- Figure 8a corresponds to the numerical solution of the complete set of 
coupled equations (1) and (2) as described previously in Section 2. A stable inter- 
face can be reached. 

- Figure 8b corresponds to the solution of the equations set but only with the 
diffusion term. The propagation and convection terms have been eliminated in 
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FIG. 6. (a) Temperature profile for different times. (b) Temperature evoiutlon at different stations 
cc) Vapour thickness evolution. (d) Vapour formation velocity with time. 
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t @ To= 2.1 k 

FIG. 7. Temperature perturbation in the liquid detected experimentally at the time of phase trans- 
ition (not scaled). 
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FIG. 8. (a) Vapour thickness evolution in the general case for a heat flux of 1.46 W/cm’. (b) Idem 
(a) in the case of a pure diffusion process. 
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SEPS hm! 

0 1 2 3 timsl 

FIG. 9. (a) Vapour thickness evolution in the general case for a heat flux of 7.0 W/cm’. (b) Idem ia! 
in the case of a pure diffusion process. 

order to take into account the pure diffusion process. It should be pointed OUT that 
in the case of single diffusion and for the same boundary conditions, the stability of 
the interface is not possible, the vapour thickness increases continuously with time. 

52.2, Idem 5.2.1 for a heat flux Ql = 7 W,‘cm’ (diffusive process of h.eat 
transport only [7 3 ). 

- Figure 9a illustrates the vapour evolution in the same case as Fig. 8a, i.e., it 
corresponds to the solution of Eqs. (1 j and (2) for the liquid. 

- Figure 9b is simiiar to the result of Fig. 8b, i.e., the solution is obtained by 
taking off the propagation and convection terms of Eqs. ( ! I and (2). 

0 12 3 I+ 5 6 7 
ti;ms 

-4 

FIG. 10. Conditions of the interface stability. 
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The behaviour of the vapour interface is quite similar in these two cases, except 
for a change in the slope d(SEPS)/dt. This change can be related to the presence of 
the convection term in the case of Fig. 9a, which corresponds to the entropy trans- 
port at V,. This term does not exist indeed in the pure diffusive case of a normal 
fluid. 

52.3. Figure 10 demonstrates the influence of small perturbations on the 
stability of the interface. It should be noted that a variation of about 1% of the heat 
flux Qi (or of the hydrostatic pressure) breaks the equilibrium and starts the 
vaporization of the condensation depending on the heat flux modification with 
respect to the equilibrium value. Also, the process of condensation or vaporization 
can alternate with a well-determined oscillation frequency. This result seems to be 
due to the predominance of the propagation terms in the equations. Numerical and 
experimental work is in progress to investigate this phenomenon more accurately. 

5.3. Interpretation 

In order to interpret the present results, let us consider the time evolution of the 
heat fluxed on the interface which satisfy the energy balance condition 

Qy + Q,, + Qh = Qi = const. 

Figure 11 shows Q, and Q,, as a function of time for the cases corresponding to 
Figs. 8a, b and 9b. 

-Cl, exiting heat flux 
of Fig. 8a 
of Fig. 8b 
of Fig 9b 

FIG. 11. Heat fluxes evolution at the liquid-vapour interface. 
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For the diffusive or the pseudo-diffusive mode (transport at V,) the temperature 
increase in X= 0 is related to the heat flux by 

where A is a constant. 
As T(0, t) = T,,, is imposed, Qcr decreases continuously as 1-‘,’ (AE’ in Fig. I1 ). 

However, it reaches a limiting value S *To * V, * p1 in the case of a pseudo-diffusive 
transport mode JAE in Fig. 11 J. 

When the vaporization process starts, Q,, increases and Q0 decreases, as a resuit 
of the heating of the vapour. Then Q, increases to reach the stationary regime, 
where Q,, = 0 (Q, = Q;j. 

This case is clearly shown in Fig. 11, where QV = Q0 - Qcl- = const. The 
vaporization process does not stop and the vapour thickness increases linearly with 
time. 

For the.predominant propagative mode, QY and Q, increase iyhile Qcc decreases, 
In this case 

where u2 is the “second sound velocity.” 
Since T must be maintained equal to T,,, = const., Q,, must increase again as 

shown in Fig. 11 (ABCD in Fig. 11). The propagation term decreases, according to 
the conclusions of [7], up to the stationary regime. Depending on the value of TSat 
the flux Q,, can reach a value smaller, equal, or greater than Q,. That explains the 
results on Figs. 8a and 9. 

CONCLUSIONS 

The influence of the propagation of temperatures waves on the phase change of 
superfluid helium has been clearly demonstrated through an accurate numerical 
simulation. In particular, the possible existence of a stable liquid-vapour interface 
has been directly related to the propagative character of the medium. The practical 
consequences can be drastic. Indeed, in the pure diffusive case (solution of the 
classical heat conduction equation without propagative terms), the temperature at 
the wall can increase up to 7000 K, while the propagation limits this temperature 
increase to about 400 K for a calculated vapour film thickness of 70 ,X 

Consequently, it will always be better to evacuate the heat energy Q * ! by the 
propagative mode and not by the diffusive one. Thus, it will be preferable to work 
at small values of flux Q during long times t, since propagation vanishes in the 
medium as Q2. This operation mode corresponds to an appropriate design of the 

581 71 l-4 
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heater surface and the heat exchange area. The numerical model can contribute to 
optimize the design procedure in applications such as refrigeration of superconduc- 
tors, thermostabilisation, etc. 

Even if the model does not take into account eventual dynamical effects such as a 
possible overpressure in the vapour phase and pressure discontinuities at the inter- 
face of phase change, its use is still valid since these effects are limited to very short 
times after the beginning of vaporization. A more elaborate mathematical and 
numerical model is now in progress to take into .account the effect of bidimensional 
geometries and the dynamical effect. 

APPENDIX: NOMENCLATURE 

A, f3, C, D? E, F-equations coefticients 
EPS - vapour thickness variation 

L - length 
Q - heat flux 
S - entropy 

SEPS - vapour thickness 
T- liquid temperature 
V - velocity 

c - specific heat 
d -diameter, derivative 
g-gravity 

i, k - current index 
k-thermal conductivity 

nz, n - number of nodes 
t-time 

x, x - space coordinate 

a - thermal diffusivity 
a -partial derivative 
p -density 
r -characteristic time 

3 - variation operator 
0 - vapour temperature 

INDEX: 

cr - critical value 
h - for heating 
i - input 
I- liquid 

fz - normal component 
o-out 

p, q - number of iteration 
s - superfluid component 

sat -saturation 
v - vapour 
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